If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X=576
We move all terms to the left:
X^2+4X-(576)=0
a = 1; b = 4; c = -576;
Δ = b2-4ac
Δ = 42-4·1·(-576)
Δ = 2320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2320}=\sqrt{16*145}=\sqrt{16}*\sqrt{145}=4\sqrt{145}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{145}}{2*1}=\frac{-4-4\sqrt{145}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{145}}{2*1}=\frac{-4+4\sqrt{145}}{2} $
| -4/7x=-36/7 | | 88=w+27 | | q2+-4=-1 | | 3x+16-6x=88 | | 35=-5x+2(x+4) | | (4+8t)^2=0 | | 2x-2x+3x=15 | | 11w=42=4w | | 3x/45=x/15 | | 0.5(-4+6x)=0.3x+0.7(x+9) | | 3x+2-5x=8+2x | | 3+-k=9 | | -3(1+6)=14-y | | 59049=(3)(3)^n-1 | | 47=3x^2 | | 10(2x+6)=8(2x+12) | | 2x-16=2(1+4x) | | 10(2x+6)=8(4x+12) | | 10(2x+6)=8(2x+6) | | F(54)=2x+10 | | 10(2x+6)=8(4x+6) | | 14j-14j+j-j+2j=18 | | 3x(10+9x−x^2)=0 | | 2x-2+3x-7+x+3=23 | | 5(x-1)=28-6x | | 6x-4=2(4x-4) | | 0.7x0.6=0.2x-0.42 | | 9p+4p+5p-14p=4 | | 30x+27x^2−3x^3=0 | | 6x3=3x6= | | 10(2x+6)=8(x+10) | | 10(2x+6)=8(x+8) |